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An adaptive boundary element approach to transient free
surface flow as applied to injection molding
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SUMMARY

An adaptive (Lagrangian) boundary element approach is proposed for the general two-dimensional
simulation of confined moving-boundary flow of viscous incompressible fluids. Only the quasi-steady
creeping (Stokes) flow of a Newtonian fluid is examined. The method is stable as it includes remeshing
capabilities of the deforming moving boundary, and thus it can handle large deformations. An algorithm
is developed for mesh refinement of the deforming moving-boundary mesh. Several flow problems are
presented to illustrate the utility of the approach, with particular emphasis on cavity filling and viscous
fingering, as applied to conventional and gas-assisted injection molding. The accuracy of the method is
assessed through the problem of jet flow and the transient fountain flow between two flat plates.
Copyright © 2000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The numerical simulation of transient moving-boundary flow problems remains challenging
despite the advent of powerful techniques. Typically, a boundary value problem of the moving
type, which involves geometrical non-linearities, must be addressed. In contrast to conven-
tional problems in fluid dynamics, the domain of computation, which is bounded in part by
the moving boundary, is not known a priori since the shape of the moving boundary itself must
be determined as part of the solution. A number of iterations are usually needed in order to
reach the precise form of the moving boundary. The problem becomes even more challenging
when, in addition, the shape of the moving boundary evolves with time, generating large
distortions in the discretized domain of the fluid.
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Several numerical techniques have been developed for the solution of moving boundary/
initial value problems. These techniques may be classified as Eulerian, Lagrangian, and mixed
Eulerian–Lagrangian [1]. In the Eulerian description of the flow, the grid points remain
stationary or move in a predetermined manner [2–5]. Typically, the fluid moves in and out of
the computational cells. The method can handle arbitrarily large moving-boundary deforma-
tions without loss of accuracy. Its main disadvantage, however, is the lack of sharp definition
of the moving boundary, and the consequent difficulty in imposing the kinematic and dynamic
boundary conditions on the moving boundary. In the Lagrangian approach, the grid points
move with local fluid particle [6–8]. The moving boundary is sharply defined and it is easy to
impose the necessary boundary conditions. However, Lagrangian methods require mesh
refinement or remeshing for large deformations of the moving boundary. Hybrid methods have
also been developed, which combine the advantages of the Eulerian and Lagrangian methods
[8]. Generally, an adaptive Lagrangian approach becomes difficult to implement when a
volume method, such as the finite element method (FEM), is used. On the other hand, the
boundary element method (BEM) is much easier to use along with adaptive remeshing as the
dimension of the problem is reduced by one.

The BEM relates velocities at points within the fluid to the velocity and stress on the
bounding surfaces. It is thus an ideal method for studying moving-boundary problems, where
the velocity on the moving boundary is the quantity of prime interest. The advantages of the
BEM include reduction of problem dimensionality, direct calculation of the interfacial velocity,
the ability to track large surface deformations, and the potential for easy incorporation of
interfacial tension as well as other surface effects.

The present paper is part of a series of studies on the applicability of the BEM to problems
of the moving boundary type. Such problems include the planar deformation of a drop in a
confined medium [9–11], gas-assisted injection molding [12], air venting during blow molding
and thermoforming [13], and the transient mixing of Newtonian and viscoelastic fluids [14]. In
particular, Khayat et al. [12] proposed an Eulerian BEM approach for free surface and
interface problems. The approach is based on the discretization of the whole cavity similar to
the FEM. In this case, the BEM loses its main advantage as a boundary-only method.

The present work addresses the numerical solution of a class of moving-boundary problems
in a confined medium of the free surface type. An adaptive Lagrangian boundary element
approach is adopted to determine the evolution of the moving boundary, taking advantage of
the reduction by one dimension as a result of the boundary-only implementation. In this case,
only the boundary is discretized. The formulation and numerical implementation are illus-
trated through problems in injection molding. Conventional injection molding is addressed by
examining the filling stage by considering isothermal flow in a rectangular cavity with sudden
expansion. Another variant of the process, namely gas-assisted injection molding, is also
covered by examining the transient flow of a liquid inside a channel driven by gas pressure.
The accuracy assessment of the method is addressed by studying the flow of a jet, and the
transient fountain flow between two flat plates.

There is a number of simplifying assumptions that need to be made for the BEM to become
applicable. The inherent transient nature of the flow process and the presence of a moving
boundary make the simulation of the problem challenging because of the non-linearities
involved [1]. The challenge becomes even greater if both inertia and viscoelastic (or, more
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generally, non-Newtonian) effects are accounted for. Such non-linear phenomena have been
addressed in moving-boundary problems with relevance to polymer processing. For instance,
viscoelastic effects were examined on the growth of spherical and cylindrical shells of a fluid
obeying a highly non-linear viscoelastic constitutive model [15]. It was found that, even under
constant driving pressure, oscillatory growth results from elastic normal stress effects. In order
to assess the mathematical intricacies in the case of pressure-driven flows, Khayat [16]
examined the small planar deformation of a viscoelastic column of fluid obeying the upper-
convected Maxwell fluid by applying a regular perturbation approach. It was found that the
governing equations are indeed hyperbolic and therefore, unlike the Navier–Stokes equations,
can entertain an oscillatory solution for a statically stressed fluid. The same problem was later
examined for large deformations using the FEM [17]. Non-linear effects, such as those
stemming from fluid elasticity, fluid inertia, and shear thinning, are difficult to account for in
a boundary element approach despite the advent of recent techniques to handle non-linear and
transient problems [18–21].

The paper is organized as follows. The problem formulation is presented in Section 2, where
basic equations, the domain of computation, and boundary conditions are covered. The
solution procedure, including the time marching scheme, adaptive meshing of the moving
boundary(ies), determination of local curvature, and the contact problem are discussed in
Section 3. Numerical assessment is covered in Section 4, while illustrative examples from
conventional and gas-assisted injection molding are given in Section 5. Finally, concluding
remarks are given in Section 6.

2. PROBLEM FORMULATION

In this section, the governing equations, domain description, and boundary conditions are
reviewed together with some of the assumptions taken for the moving-boundary flow of
viscous incompressible Newtonian fluids. Only low-Reynolds number flows, typically charac-
terized by small velocities, small length scales, and/or high viscosity, will be considered. In this
limit, the inertia terms in the momentum equation are negligible, so the flow is in a state of
creeping motion. The formulation is thus limited to Stokes flow.

2.1. Go6erning equations

At any instant t, the fluid is assumed to occupy a two-dimensional region, V(t), which is
bounded by G(t). It is convenient to take V(t) as the inner domain, excluding G(t). Thus,
V(t)@G(t) constitutes the domain occupied by the fluid. The fluid is taken to be neutrally
buoyant so the effects of gravity and any external body forces are negligible. The conservation
of mass and linear momentum equations are given by

9 · u(x, t)=0, 9 · s(x, t)=0, x�V(t)@G(t) (1)

where 9 is the gradient operator, x is the position vector, u(x, t) is the velocity vector, and
s(x, t) is the total stress tensor given in terms of the hydrostatic pressure p(x, t) and excess
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stress tensor t(x, t). Here, s(x, t)= −p(x, t)I+t(x, t), where I is the unit tensor. In the
present study, the fluid is assumed to be Newtonian, so that

t(x, t)=mÈ9u(x, t)+9uT(x, t)É, x�V(t)@G(t) (2)

where m is the viscosity of the fluid. The superscript T denotes the transpose of the matrix. It
is important to note that the acceleration term (u/(t in the momentum conservation equation
has been neglected, so that for a Newtonian fluid, the formulation in question is not strictly
unsteady, but quasi-steady. This quasi-steady state assumption is valid whenever L2/n�T,
where L and T are typical characteristic length and time of the flow, and n=m/r is the
kinematic viscosity (r being the density). In the present case, T�L/U, U being a typical value
of the driving velocity, which can be related to the inlet flow rate in conventional injection
molding, or the driving pressure drop in gas-assisted injection molding. Thus, for the
quasi-steady state assumption to apply, one must have UL/n�1. This is indeed typically the
case for fluids of interest to mixing problems. Note also that this inequality is implied by the
fact that the Reynolds number is small. Physically, the quasi-steady state approximation means
that a Newtonian fluid immediately adjusts to changes in the movement of the boundary or
boundary conditions.

2.2. Domain of computation of the mo6ing-boundary problem

There are two classes of moving-boundary problems considered in this study, with direct
relevance to conventional and gas-assisted injection molding. Each category of problem is
illustrated in Figure 1. For conventional injection molding, Figure 1(a) illustrates the situation
at a given time t. The boundary G(t) is composed, at any time, of a part spanning the source
region, Gs, the wetted part of the cavity, Gw(t), and the moving front, Gf(t). The wetted part
of the cavity is taken to be time-dependent, as it grows as more fluid comes in contact with the
wall. The overall boundary may thus be expressed as G(t)=Gs@Gw(t)@Gf(t). The liquid
occupying the domain V(t)@G(t) is called melt, in reference to polymeric liquids usually
involved in injection molding processes.

The process of gas-assisted injection molding is illustrated in Figure 1(b). The real process
consists of an initial stage of conventional injection molding, during which the melt is driven
inside the cavity similarly to Figure 1(a). At some stage of the process, the melt stops being
injected. Instead, the existing amount of liquid is driven by a gas, usually nitrogen, as depicted
from Figure 1(b). Similar to conventional injection molding, there is a wetted part of the
cavity, as well as a free surface (front), but there is no source of fluid. Instead, there is a
moving (gas/melt) interface, Gi(t). In this case, G(t)=Gi(t)@Gw(t)@Gf(t). The driving pressure
is assumed constant throughout the gas region. In principle, the motion of the gas must be
accounted for, but, as a first approximation, it is neglected.

2.3. Boundary and initial conditions

While the boundary conditions on the source and wetted cavity are straightforward to
implement, those on the melt front and gas/melt interface must be examined more closely. The
velocity is assumed to be fully prescribed along the source boundary Gs. A general flow, us(x),
usually a Poiseuille flow, is imposed
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u(x, t)=us(x), x�Gs (3a)

If a gas/melt interface exists instead of a source, a driving (gas) pressure, Dp, is assumed to
apply, such that the traction at the interface is given by

t(x, t)= −Dpn(x, t), x�Gi(t) (3b)

Here t(x, t)=s(x, t) · n(x, t) is the traction, n is the normal unit vector at Gi(t). Equation (3b)
represents the dynamic condition at the interface. The fluid is assumed to adhere to the cavity
boundary, so that stick and no-penetration boundary conditions apply on the wetted part of
the cavity

u(x, t)=0, x�Gw(t) (4)

The proper choice and implementation of a kinematic condition is generally not obvious [1].
The dynamic conditions on the free surface (melt front) are based on the continuity of the

tangential stress (no traction) and discontinuity of normal stress caused by the interfacial
tension

t(x, t)=gn(x, t)9 · n(x, t), x�Gf(t) (5)

Figure 1. Schematic view and notations used for typical moving-boundary flows and confining cavity.
Cavity filling or injection molding problems are typically illustrated in (a), while viscous fingering or

gas-assisted injection molding problems are illustrated in (b).
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where n is the normal vector outward to the front and g is the surface tension coefficient.
Note that boundary condition (5) is derived under conditions of equilibrium and uniform
interfacial tension. Its validity under dynamic conditions is simply assumed [22,23]. The
condition also assumes implicitly that the flow activity of the fluid outside the moving
boundary (air) is negligible with the (atmospheric) pressure taken as zero.

In addition, the kinematic condition is needed, which relates the evolution of the moving
boundary to the local velocity field. The moving boundary deforms in accordance with the
instantaneous velocity field, thus determining new moving boundary positions with time. In
a Lagrangian representation, the moving boundary is assumed to deform with the fluid
velocity, such that the evolution of Gf(t) or Gi(t) is governed by the equation

dx
dt

=u(x, t), x�Gf(t) or Gi(t) (6a)

Although easy to implement, the resulting scheme based on Equation (6a) tends to sweep
points on the moving boundary along the tangent to the moving boundary, even if only
small shape changes take place. Consequently, frequent redistribution of the moving
boundary points or remeshing becomes necessary.

Alternatively, the moving boundary can be assumed to deform pointwise along the nor-
mal with the normal projection of the fluid velocity at the moving boundary [1]. This
method keeps the points evenly distributed on the moving boundary. Thus, the following
kinematic boundary condition results:

dx
dt

=n(x, t)[n(x, t) · u(x, t)], x�Gf(t) or Gi(t) (6b)

Unlike Equation (6a), the above equation prevents the nodes from being swept along the
tangent to the moving boundary. However, it leads to numerical instability of the saw-
tooth type. This difficulty is usually circumvented by applying a smoothing technique to the
moving boundary. Given the remeshing capabilities of the present approach, the use of
Equation (6a) turned out to be the good choice for the class of problems covered in this
study.

As to the initial conditions, when the fluid assumed to be at rest initially

u(x, t=0)0, x�V(t=0)@G(t=0) (7)

This is, however, not always the case. Sometimes a new flow configuration emerges out of
an existing one that is not the equilibrium. This is illustrated in the viscous fingering
problem.

Thus, the flow field is determined through the solution of Equations (1) and (2) subject
to the initial condition (7) and the boundary conditions above using the boundary integral
method.
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2.4. Boundary integral equation

The general time-dependent integral equation for a moving domain is given by [24]

&
G(t)

t(y, t) · J(x�y) dGy−
&

G(t)

n(y, t) · [u(y, t) · K(x�y)] dGy=c(x, t)u(x, t), x�V(t)@G(t)

(8)

Here J and K are the usual symmetric and anti-symmetric tensors with respect to r=x−y,
and are given as [24]

J(x�y)=
1

4p

�
I log r−

rr
r2

�
, K(x�y)= −

1
p

rrr
r4 (9)

where r= �r�. The function c(x, t), for x�G(t), depends on the geometrical form of the
boundary; its value arises from the jump in the value of the velocity integrals as the boundary
is crossed. When the boundary is Lyapunov smooth, which requires that a local tangent to the
moving boundary exists everywhere, the function c(x, t)=1/2. This is the case if constant
boundary elements are used. Thus, the assumption of boundary smoothness is generally not
valid in the vicinity of sharp corners, cusps or edges. In general, since c(x, t) depends solely on
geometry, it may be evaluated assuming that a uniform velocity field, such as u(x, t)=ue, is
applied over the boundary, e being the direction of the velocity and u is its magnitude. Under
these conditions, all derivatives (including tractions and stresses) must vanish. Hence, at any
time t, Equation (8) reduces to

c(x, t)=
&

G(t)

n(y, t) · [e · K(x�y) · e] dGy, x�G(t) (10)

Thus, at any time t, the form of the boundary G(t) is determined, and the function c(x, t) is
evaluated using the equation above.

3. SOLUTION PROCEDURE

In this section, a time marching scheme is proposed to discretize Equation (6). Once the flow
field is determined at a given time step from Equation (8), the location of the moving
boundary can be determined by solving Equation (6). As the boundary elements are distorted,
the mesh is refined through element subdivision. The problem of contact between evolving
moving boundary and surrounding cavity walls is finally covered.

3.1. Time marching scheme and mo6ing boundary e6olution

Consider now the application of the integral equation (8) for a point on the boundary, i.e., for
x�G(t). The discussion is limited to the case of conventional injection molding; the problem of
gas-assisted injection molding is formulated in a similar manner. The flow field at any interior
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point x�V(t) is obtained once the variables at the boundary are known. Since the velocity is
fully prescribed on Gs@Gw(t), only the traction (or stress) will be determined there. The
traction is imposed on the moving boundary, Gf(t), where the value of the velocity will be
found. More explicitly, Equation (8) may be rewritten as

&
Gs@Gw(t)

t(y, t) · J(x�y) dGy−
&

Gf(t)

u(y, t) · [n(y, t) · K(x�y)] dGy

+g
&

Gf(t)

[n(y, t)9 · n(y, t)] · J(x�y) dGy+
&

Gs

us(y) · [n(y) · K(x�y)] dGy

=

Á
Ã
Í
Ã
Ä

c(x, t)us(x), x�Gs

0, x�Gw(t)
c(x, t)u(x, t), x�Gf(t)

(11)

where conditions (3) and (4) are used. The unknowns in Equation (11) are thus t(x�Gs@Gw, t)
and u(x�Gf, t), so that the values of the third and fourth integrals on the left-hand side are
known.

The time derivative in Equation (6) is approximated by an explicit Eulerian finite difference
scheme, with higher-order terms in the time increment Dt being neglected. The integral
equation (10) relates the velocity and traction at the current time. Once the flow field is
determined at each time step t, the position of the moving boundary is updated. The evolution
of Gf(t) is dictated by Equation (6). The updated position of the nodes that belong to the
moving boundary is thus determined once the velocity at the moving boundary is obtained
from the solution of Equation (11).

The integrals in Equation (11) are discretized into a finite sum of contributing terms over the
boundaries. In this work, the boundary elements are assumed to be geometrically linear so that
the velocity and traction are constant over each element. This makes the proposed adaptive
remeshing method and estimation of curvature less difficult to implement since no interpola-
tion of the flow variables is needed at each time step. The use of higher-order elements is
possible, but may not be crucial given the mesh refinement and remeshing capabilities involved
in the current procedure. The traction is constant over a flat linear element, and is multiply
valued at a corner node if higher-order elements are used. In two dimensions, the traction is
assumed to be double valued at every node of a curved boundary. Another advantage of the
constant boundary element is that the value of c(x, t) is always and everywhere equal to 1/2.
In addition, the normal vector to each element is determined exactly.

3.2. Adapti6e meshing

An algorithm is proposed for adaptive refinement of the mesh of the evolving moving
boundary. Initially (tB0), the fluid is assumed to occupy a two-dimensional region, V0=
V(t=0), bounded by part of the cavity (source) and moving boundary. Typically, at t]0,
additional fluid penetrates V0 (see Figure 1) and the volume starts to grow together with the
boundary elements. At some point, some elements become too distorted, and mesh refinement
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or remeshing is needed. Some other elements become too small, and adjacent segments need
to be combined in this case.

The refinement is carried out by sub-dividing the elements that are too distorted, and
combining elements that are too small. The criteria for sub-division and combination are
based on the element length. In this case, at each time step of the flow, a list of elements is
established, with the length of the segments greater than an imposed tolerance, Dmax. The
list is sorted in order of increasing length of each element. In order to avoid generating
mesh incompatibilities, larger elements are subdivided first. The sub-division starts from the
last (i.e., the longest) element in the list, and is continued recursively until the list is empty.
The sub-division is carried out by bisecting the element in the list.

When the distance between two nodes become smaller than an imposed minimum, Dmin,
the segment in question is phased out, as it is combined with the two adjacent segments.
The possibility for two nodes to become too close to each other arises when nodes are
swept along the moving boundary. This situation is typical of free surface flow during the
flow inside a channel or the filling of a cavity. The sweeping occurs as a result of the
fountain flow effect at the moving boundary.

In summary, the first step in the adaptive meshing process consists of creating the data
file containing the description of the problem domain, boundary conditions, loading, and
initial mesh. The initial mesh is first examined to check for initially distorted elements. This
mesh comes from a CAD system, such as PATRAN or PROENGINEER. The initial mesh
is then refined by the adaptive remeshing scheme described above. The refined mesh is then
submitted to the BEM solver. In practice, it is found that the quality of the initial mesh is
adequate, and any initial refinement is not deemed necessary.

3.3. Determination of local cur6ature

The value of the curvature at a particular location (node or element) on the moving
boundary is needed if surface tension is accounted for. The curvature is related to the
divergence of the normal vector, n(x, y, z, t), at the location in question. Thus, the determi-
nation of the curvature is based on the estimation of the derivative of the normal vector
components in the three directions. For this, it is convenient to define local co-ordinates
(j, h) spanned by the tangent to the moving boundary at the local point and the normal to
the boundary.

Consider now the curvature at an element (centroid) of the discretized boundary. The
curvature is estimated directly at the centroid of the element rather than on a smooth
interpolated boundary going through the element nodes. Boundary interpolation and fitting
can be very costly. Generally, each node of the segment belongs to two elements, and the
normal at the node is not uniquely defined. The normal vector is then taken as the segment
average of the normal vectors to the elements to which the node belongs. The normal
vector anywhere to the element, with nodes 1 and 2, may then be generally written as

n(x, t)= %
2

i=1

ni(t)fi [j(x, t)] (12)
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where ni(t) are the normal vectors at node i, and fi(x, t) are suitably introduced interpola-
tion functions. In this work, given the fact that linear elements are used, fi(x, t) are taken
to be linear. The partial derivatives of the normal vector are obtained by differentiating
Equation (12). If the j co-ordinate axis is taken to lie along the element, then

9 · n=
(nj

(j
(13)

and the curvature is just given by −9 · n/2.

3.4. Contact between mo6ing boundary and confining wall(s)

Initially, the fluid is assumed to occupy a prescribed area, V0, which is taken as the starting
step for the computation. Typically, V0 is bounded by a source line, a part of the cavity,
and the moving boundary. The source line is assumed to be part of the cavity at all times.
The initial surface of fluid is thus in contact with the cavity only at the intersection of the
moving boundary and the source line. The moving-boundary mesh is independent of the
source surface mesh. The mesh of the source surface does not change with the subsequent
motion. In fact the source line is part of the cavity, and its mesh coincides with that of the
cavity.

The cavity walls are discretized into an appropriate number of elements that serve only
to confine the fluid but do not come into the flow calculation. The number of cavity
elements can thus be arbitrarily large, leading to an accurate representation of the cavity
shape. This is particularly advantageous for practical situations where the geometry is
typically complex. Obviously, the mesh density of the evolving moving boundary need not
match that of the surrounding cavity. In other words, the accuracy in cavity representation
is usually far superior to that of the surface bounding the moving fluid. A node or element
that comes in contact with the wall is assumed to subsequently adhere to it. Contact is
assumed to be established once the fluid has come close to the cavity wall to within a
certain distance, which is usually taken to be of the order of an element size. The boundary
conditions imposed at a given element depend on whether the element belongs to the
moving boundary or the cavity.

4. NUMERICAL ASSESSMENT

The validity of the formulation and solution procedure is next demonstrated for a jet flow
and the transient fountain flow between two flat plates. Ideally, comparison should be
carried out between the numerical solution and an exact solution, including the interaction
of the fluid with the surrounding cavity. But no analytical solution can be found for such
cases. Comparison with existing formulations is also difficult; while some results exist for
steady free surface flow, relatively little is reported for transient flows. However, some
comparison will be carried out with existing finite element results for the flow between flat
plates, as well as with experiments for the developing flow inside a tube.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 33: 847–868



2D SIMULATION OF CONFINED MOVING-BOUNDARY FLOW 857

4.1. De6eloping jet flow

Consider the jet flow of an incompressible viscous fluid occupying initially (tB0) the space
between two flat plates in the (x, y)-plane, i.e., a rectangular domain with x� [0, 3] and y� [0, 1]
cm. At t=0, Poiseuille flow is imposed at x=0, with maximum velocity equal to 5 cm s−1.
The fluid emerges out of the channel at x=3 cm. Because of the ‘fountain flow’ effect, a
transverse velocity component exists, which leads to the swelling of the jet. Figure 2 shows the
evolution of the jet at equal intervals of time over a period of 6 s. The figure is not drawn to
scale for clarity. The jet has reached x=20 cm, which is 17 times the width at the exit. The
results in this case are based on Dt=0.01 s, Dmax=0.2 cm, and Dmin=0.1 cm.

In order to assess the convergence of the method, several values of Dt have been used for
fixed Dmax and Dmin. Also, and more importantly, the influence of Dmax is assessed for fixed
time increments. It is found that when adaptive meshing is used, the influence of Dt is relatively
insignificant on the evolution of error; this latter being effectively controlled by the value of
Dmax (and Dmin). The error is estimated by monitoring the evolution of the fluid volume during
the flow relative to the amount of incoming fluid (flow rate) over time. The comparison is
typically illustrated in Figure 3 for Dmax� [0.3, 2.5] cm, Dmin=0.1 cm, and Dt=0.01 s. The
figure shows the evolution with time of the exact incoming flow volume, and that correspond-
ing to the moving domain. Clearly, comparison improves as Dmax decreases.

Figure 2. Simulation of an emerging jet. The fluid occupies the domain (x, y)� [0, 3]× [0, 1] cm2.
Poiseuille flow is imposed at x=0, with maximum velocity equal to 5 cm s−1. The profile shown reflects

the evolution of the jet over 4.5 s. Here Dt=0.01 s.
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Figure 3. Influence of mesh size on numerical accuracy for the jet flow in Figure 2. The figure shows the
evolution of the amount of outflow of fluid with time. Comparison shows the influence of Dmax on error

accumulation with time for Dmax� [0.3, 2.5] cm.

The evolution of the number of elements (segments) is also of interest. The results for the jet
problem are shown in Figure 4 for Dmax� [0.3,�) cm, Dmin=0.1 cm, and Dt=0.01 s. Note
that the limit Dmax�� corresponds to a fixed mesh. The figure indicates that the increase in
the number of element is overall linear for any Dmax value. In fact, the behavior is piecewise
constant. This behavior is of course expected since the number of elements remains constant
over intervals of time that decrease as Dmax decreases.

4.2. Transient fountain flow between flat plates

The numerical implementation is further assessed by examining the start-up flow of a fluid
between two flat plates, with a free front initially at rest. Gravity and surface tension effects
are neglected, so that the free surface is initially flat and perpendicular to the walls (90° contact
angle). These conditions correspond to the experiments of Behrens et al. [25] and the finite
element calculations of Mavridis et al. [26]. For a typical boundary element simulation, the
plates coincide with the y=0 and y=1 cm lines, and the domain occupied by the fluid is given
by (x, y)� [0, 0.1]× [0, 1] cm2. Poiseuille flow is imposed at all times at x=0, with a mean
velocity equal to 1 cm s−1. The boundary of the initial domain is subdivided into 40 elements
(segments).

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 33: 847–868



2D SIMULATION OF CONFINED MOVING-BOUNDARY FLOW 859

Figure 4. Influence of mesh size on the number of elements for the jet flow in Figure 2. The figure shows
the evolution of the number of elements with time for Dmax� [0.3, 8 ) cm.

Figure 5 shows the evolution of the free surface shape. Steady state is reached in
approximately 1.5 s, when the front tip, Xmax, reaches 1.5 cm. At this stage the flow field
remains invariant with respect to a frame of reference moving with average velocity of the fluid
and the problem can be analyzed in the steady state [27]. The evolution of the number of
elements for various values of Dmax is shown in Figure 6. In this case, Dmin is kept equal to 0.07
cm. Four values of Dmax are considered in the range [0.08, 8 ). Again, when Dmax is set equal
to infinity, no element sub-division occurs. Unlike the case of jet flow, the number of elements
is not linear with time.

Behrens et al. [25] performed experiments with Newtonian fluids in tubes. They monitored
the evolution of the difference in tip and contact line positions, Xmax−Xcl, as a function of tip
position, Xmax. A direct comparison with results based on the current formulation is of course
impossible, but a qualitative comparison is possible. Figure 7 displays the dependence of
Xmax−Xcl on Xmax for three values of Dmax (0.1–0.3 cm). There is a strong dependence on
Dmax when steady state is reached. All three curves exhibit fluctuation around the steady state
level, which decreases as Dmax decreases. There is also a strong overshoot for the cruder
meshes. The results in the figure should be compared with those in Figure 6 of Reference [25].
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Figure 5. Transient fountain flow between flat plates. The fluid occupies initially the domain (x,
y)� [0, 0.1]× [0, 1] cm2. Poiseuille flow is imposed at x=0, with average velocity equal to 1 cm s−1. The

profile shown reflect the evolution of the flow over 4 s. Here Dt=0.01 s.

5. ILLUSTRATIONS FROM INJECTION MOLDING

Elaborate numerical results are now presented for the developing flow between flat plates with
viscous fingering. This problem is of relevance to the process of gas-assisted injection molding.
Surface and interfacial tension effects as well as gravity are neglected. Another illustration is
borrowed from conventional injection molding of a plate with sudden expansion.

5.1. Viscous fingering and gas-assisted injection molding

The potential of the proposed formulation and numerical implementation is now demonstrated
for the transient problem of viscous fingering. This problem is of fundamental importance, and
is also of significant practical interest as it is related to gas-assisted injection molding. This
latter process is a variant of conventional injection molding. The process in fact consists of an
initial phase when part of the cavity is filled similarly as in injection molding. Instead of filling
the cavity (mold) entirely with liquid polymer, gas (usually nitrogen) is injected under pressure,
which drives the melt further until it entirely fills the mold. The melt is left to cool and to
solidify, resulting in a hollow molded product.

The processing sequence for gas-assisted injection molding is illustrated in Figure 8 for a
flow between two flat plates. The initial stage consists of driving the melt during 0.02 s to fill
the space roughly given by (x, y)� [0, 2]× [0, 1] cm2. During this time, Poiseuille flow is
imposed at x=0 with maximum velocity equal to 5 cm s−1. At t=0.02 s, gas is injected at
x=0, which becomes the sole fluid mover. At the gas/melt interface, a pressure of unit
magnitude is applied, acting along the normal to the gas/melt interface (see Figure 1(b)). In
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Figure 6. Influence of mesh size on the number of elements for the fountain flow in Figure 5. The figure
shows the evolution of the number of elements with time.

this study, the pressure is maintained constant. The earlier stages corresponding to t=0.25 and
0.44 s are typical of the process, when gas begins to penetrate the melt (fingering), with the
melt adhering to the walls near the entrance.

The penetration proceeds further, with part of the melt literally swept away near the
entrance; there is essentially no melt deposited at the entrance (t\0.4 s). Instead, the melt is
pushed forward to form a relatively thick layer along the wall of the entrance (t=0.67 s). It
is interesting to note that, near the entrance, there is a ‘plug flow-like behavior’, leaving a
sharp cut in the melt. The amount of melt deposited along the wall increases with time, and
the thickness is relatively constant for the most part behind the melt front (t=0.8 s). Because
of the melt deposition along the wall, the gas tip is constantly accelerating, eventually reaching
the melt front (t=0.9 s). At the same time, there is little flow activity upstream of the gas tip.
The final stage in Figure 8 also shows that the gas tends to expand laterally as it is
encountering less resistance near the melt front in the lateral direction(s). Finally, it is
important to observe that the gas is bound to penetrate completely through the melt, a
phenomenon known as ‘blow-through’ in the injection molding industry.
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Figure 7. Dependence of Xmax−Xcl on front tip position, Xmax, for Dmax� [0.1, 0.3] cm.

5.2. Con6entional injection molding

The final illustration presented in this study is borrowed from conventional injection molding.
This process is complex as it involves flow, solidification, stress build-up, and warpage. The
illustration here is limited to the filling stage of a rectangular cavity with sudden expansion.
The fluid flows initially in a narrow section of the cavity occupying the region (x, y)� [0, 3]×
[0, 1] cm2, and later into the larger square section [3, 6]× [−1, 2] cm2, where the sudden
expansion occurs. Initially, for tB0, the fluid is assumed to occupy the region [0, 0.1]× [0, 1]
cm2 in the (x, y)-plane. The melt front is straight. At t=0, Poiseuille flow is imposed at x=0,
corresponding to a maximum velocity equal to 5 cm s−1. Throughout the calculation, Dt is
equal to 0.0075 s, Dmax=0.18 cm and Dmin=0.1 cm. Approximately 600 steps are used for
complete filling. Figure 9 displays the evolution of the flow for six different stages.

Figure 9 displays six typical stages of the filling process. Initially, and until approximately
0.04 s, the flow moves exactly as a transient fountain flow between two flat plates (Figure 5).
This is illustrated in Figure 9 by the t=0.0375 s stage. Once the fluid emerges into the square
section, the flow behaves like the jet problem in Figure 2. This situation is clearly shown for
t=0.0975 s. The fluid comes in contact with the cavity wall at x=6 cm, at approximately
t=0.11 s. At this stage, the swelling in the jet increases as shown typically in the figure for
t=0.1275 s. It is interesting to observe that the jet at this stage, despite the pronounced
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Figure 8. Viscous fingering and its relevance to gas-assisted injection molding. The figure shows six
stages fot 0B t [s]B1, for Dt=0.001 s, Dmax=0.1 cm.
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Figure 8 (Continued)
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Figure 9. Conventional injection molding in a rectangular cavity with sudden expansion. The figure
shows six stages fot 0B t [s]B0.23, for Dt=0.0075 s, Dmax=0.1 cm.
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Figure 9 (Continued)
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amount of swelling, still exhibits straight (horizontal) sides between 4 and 6 cm and the
(vertical) wall, and tapers linearly between 3 and 4 cm.

As the flow continues, the swelling becomes less uniform as depicted at t=0.1725 s. There
is more swelling further upstream from and a slight depression near the wall (x=6 cm). It is
noted that symmetry is essentially preserved. The t=0.2025 s stage reflects typically the stage
when the fluid has come in contact in the lateral walls. In this case, there remains only one part
of the melt front that is still free to move, between 3 and 3.6 cm. Two small protrusions into
the x\6 cm range are also shown, which can be controlled (eliminated) by decreasing the time
increment. Note that at this stage, the walls at x=3 cm have not been wetted yet. Finally, at
t=0.225 s, the cavity is completely filled.

6. CONCLUSION

An adaptive Lagrangian boundary element approach is proposed for the flow of Newtonian
viscous fluids. The mesh refinement algorithm is simple and yet is found to be robust and
suitable for moving boundary flow. The convergence and accuracy of the numerical implemen-
tation are assessed for the problem of jet flow, and the transient fountain flow between flat
plates. The method is illustrated through the problem of viscous fingering in a channel, with
relevance to gas-assisted injection molding, and the filling stage of injection molding inside a
rectangular cavity with sudden expansion.
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